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Abstract: This paper considers the issue of developing approximate abstractions of stochastic
hybrid systems. The stochastic continuous behaviour breaks many essential properties of hybrid
automata. Our approach departs from the progress in stochastic reachability analysis and
Markov chain approximations. For this purpose we have to introduce a new approximation
scheme and look for a suitable metric. We construct an exponential timestepping approximation
scheme for general Markov processes. This approximation scheme relies on the complex space of
system trajectories involving a sensible choice of the metric. Fortunately, the Skorokhod metric
is sly enough to overcome the problems. Keywords: stochastic hybrid systems, approximations,
step processes, approximate abstraction, model checking.

1. INTRODUCTION

Stochastic hybrid systems (SHS) can be thought of as
randomisation of the hybrid automata models. This per-
spective is very tempting especially because it makes easy
to classify systems. For e.g., by quantifying probabilisti-
cally the discrete transition only, one obtains the well-
known model of Piecewise Deterministic Markov Process
(PDMP) Davis [1993]. By symmetry, an interesting class
of systems is obtained randomising the continuous evo-
lutions only: a discrete automaton controls a set of ran-
dom dynamical systems. Unfortunately, this nice system
based view is very misleading. The researcher in hybrid
system would be tempted to think that the specification
and verification techniques used in the deterministic case
might be conveniently extended to the stochastic case.
This viewpoint is particularly encouraged by the success of
the probabilistic formal methods in the discrete case. The
ruthless reality is that when the continuous evolutions are
randomised, the useful properties of hybrid automata are
lost. Consequently, some metrics and temporal logics de-
fined for deterministic hybrid systems can not be anymore
defined for the stochastic versions.

However, the stochastic verification must follow the same
strategy like for deterministic hybrid systems via discrete
approximations (or abstractions) of the given system.
Again, there are difficulties in extending the probabilistic
formal methods from discrete to the continuous case. One
important obstacle is given by the missing concept of next
state in the continuous case.

Even in the case of PDMP the dependence of the jump
probabilities on the continuous evolution changes signifi-
cantly the nature of the model.

The pioneering steps towards formal verification of SHS
have been made, in the recent years, by several approaches
in stochastic reachability analysis (SRA) Prandini and

Hu [2006]. The SRA objective represents, in the stochas-
tic models of large computer networks, a measure of a
peformability, and its upper bounds estimations consti-
tute formal specifications. In this interpretation, the SRA
methods can be thought of as model checking of the
performance properties. In Prandini and Hu [2006], the
SRA is performed by approximations with Markov chains,
which opens the possibility of performing model checking
of performance properties using the discrete probabilistic
model checking.

This paper presents further steps in the foundations of
formal specification and model checking by employing
methods of approximation of SHS. We depart from the
previous work in approximation of SHS by Markov chains
using for the first time the following important concepts:
(i) step process (pure jump Markov processes) instead of
Markov chains; (ii) the Skorokhod metric Ethier [1986];
(iii) exponentially distributed approximation step times.

The standard approximation techniques are developed for
estimation purposes and they are based on equidistant
observation times. This is convenient for mathematical
proofs and for implementation, but not for modelling real
life applications. In general, the observable approximant is
a stochastic process with exponentially distributed sojourn
times for each state.

In this work, we focus on the most basic step of investigat-
ing new approximation methods that make possible formal
specification and verification of safety properties of SHS.

In section 2, we construct a general exponential timestep-
ping approximation scheme for a very large class of Markov
processes. In Section 3, we present a general model for
SHS. As explained in Pola and Bujorianu [2003], it includes
most of the other models of SHS as instances. In Section
4, we show the advantages for analysis, specification and
verification of SHS, if we apply to SHS the approximation



scheme developed in Section 2. The paper ends with some
final remarks.

2. APPROXIMATIONS OF MARKOV PROCESSES

All in all, in this section, we obtain an exponential
timestepping approximation method, for strong Markov
processes whose trajectories are right continuous and left
limits, taking values in a complete separable metric space.
We construct a sequence of Markov step processes that
converges to the given process. Naturally, the metric em-
ployed in the convergence result is the Skorokhod metric.
The result is natural since, it is known that each cadlag
function can be approximated by piecewise constant func-
tion (Th. 6.2.2 Whitt [2002]). Therefore, one would expect
to find a possibility to approximate stochastic processes
with cadlag paths by step processes. Similar result has
been obtained in Ma e.a. [2000], but for Hunt processes
and with a completely different proof.

2.1 Motivation

In this paragraph, we derive the key ideas for defining
approximate abstractions for general classes of SHS. In
practice, since the trajectories of an SHS can not be
described in a transitional system manner (a concept of
next state is not available), to find analytical solutions
for the reachability problem (i.e. to compute the reach
set probabilities) is a challenging problem. A natural way
to approach this problem is to find suitable abstractions
of the given model such that they satisfy requirements
as follows: 1. to be observable (transition system with an
explicit next state representation), 2. to have the Markov
property (in the model, a system is allowed to hold in
state for an exponentially distributed time), 3. there is
a suitable probabilistic logic to specify interesting system
properties, 4. a concept of accuracy of approximation
should be expressible mathematically by using specific
metrics: the accuracy of approximation should be reflected
in the error of approximation of the reach set probabilities.

Therefore, different methods for defining approxima-
tions/abstractions of SHS should necessarily be based
on the study of the approximation schemes available for
stochastic processes. The motivation of this is the fact
that the trajectories of different classes of SHS make up
a Markov process with a hybrid state space. Thus, when
we have to approximate SHS, we may consider two ap-
proaches:

e Approximate the continuous dynamics in each mode
(usually a diffusion process), keeping the SHS modes (the
discrete state).

e Consider the space of trajectories and some observation
times and construct some ‘elementary trajectories’ (step
functions) which approximate the initial trajectories.

In literature, there exist two strategies to construct ap-
proximations for stochastic processes, namely approxima-
tion schemes that involve:

e an equidistant time discretisation of the given pro-
cess and approximation stochastic differential equations
(SDE) by difference equations (Euler/Taylor scheme, jump

adapted schemes, the general finite difference method
Kushner [1992]);

e an exponential timestepping discretisation and approx-
imation of the process generator (Yosida approximations
Ethier [1986].

Verification methods for SHS using Markov chain approx-
imations have been developed by Krystul and Bagchi in
Bagchi [2004], Krystul and Blom in Blom [2005] and Pran-
dini and Hu in Prandini and Hu [2006]. One important
remark about these approaches is that all of them use the
Euler scheme approximation for a particular class of SHS.

We develop an exponential timestepping approximation
for a general class of Markov processes, which includes,
as a subclass, the stochastic processes that appear in the
behaviour description of SHS. For a given process, we use
this (Poisson like) scheme to construct a sequence of step
processes or jump processes in the terminology of Davis
[1993], which converges in the Skorokhod topology Ethier
[1986] to the initial process. In this case, the accuracy
of approximation is described by the Skorokhod metric,
i.e. the paths of the given process and the paths of
approximants can be transformed into each other by small
deformations of space when the time has to be considered
close. For any ¢ € (0,1) and 6 > 0 we can choose an
element of this sequence such that the probability measure
of those paths that are ‘far’ from those of the initial process
(i.e. the Skorokhod distance between them is bigger than
0) is less than e. This will be an ¢ — §- approzimate
abstraction of the given process.

For the existing numerical methods, one of the most
difficult tasks is the measurement of exit times, where the
quantity of interest is the first time when a process reaches
a given target set or exits a region. Even if the process
updates are generated with good accuracy, large errors can
result from the possibility that the boundary is attained
during the timestep although the process is within the
boundary at both the beginning and the end of timestep.
Exponential time stepping algorithms have been proved to
be efficient for exit time problems for stochastic differential
equations because a boundary test can be performed at the
end of each timestep, providing high-order convergence in
numerical evaluation of mean exit times.

2.2 Background

We first fix our notations by recalling the basic definitions
(strong Markov process, step process and Skorokhod topol-
ogy) needed in this paper. We use the terminology of the
comprehensive monograph Ethier [1986], which is one of
the most complete treatise on Markov process theory.

Strong Markov Process. We fix (2, F) a measurable space.
Let X be a topological Hausdorff space and assume that B
is the Borel o-algebra of X. Let B*(X) the Banach space
of all bounded, real-valued, Borel measurable functions on

X with ||f|| = sup,ex | f(2)].

Let M = (Q, F, Fi, (21)1>0, (Py)zex) be a Markov process
with the state space (X,B). The elements F;, P, are
standard defined as any textbook Ethier [1986]. A Markov
process M is called strong Markov if the Markov property
holds for every stopping time w.r.t. its natural filtration




(Fi). For detailed definitions consult Ethier [1986]. In this
paper, we will make use of the following parametrizations
of M:

The operator semigroup is P = (Piiso: Pif(x) =
[ f)pe(x,dy) = E,f(z), f € BY(X),Vz € X; where
E, is the expectation w.r.t. P,, and p; is the transition
function of M. The operator semigroup (P )¢~ is, in fact,
the collection of all first order moments, which can be
associated with the family of random variables {z;|t > 0}.

The operator resolvent V = (V,.),>¢ associated with P is

o0

Vo f(z) = /eiTtPtf(:zr)dt,f eB(X),z e X. (1)
0

The operator resolvent (V;.),>o is the Laplace transform of
the semigroup.

The infinitesimal generator L is the derivative of P, at

t = 0. Let D(L) C Bb(lX) be the set of functions f for
which the limit limy\ o 2 (P:f — f) exists and denote this
limit Lf.

Skorokhod Topology. In this paragraph (X,d) is a fixed
complete separable metric space. We consider the set
Dx[0,00) of all paths  : [0,00) — X that are right
continuous and have left limits (i.e. the space of all
cadlag!  functions from [0,00) to X). Such functions
are known also as Skorokhod functions. A topological
structure (topology) on the space Dx|[0,00) has been
introduced by Skorokhod as an alternative to the topology
of uniform convergence in order to study the convergence
in distribution of stochastic processes with jumps Whitt
[2002]. This topology is generated by a metric related to d
(see Ethier [1986], III).

Skorokhod has given a Polish topology on Dx[0,00). It
rests on the idea that temporal as well spatial measure-
ments are subject to errors, and that paths that can be
transformed into each other by small deformations of space
and time should be considered close.

T

The space Dx[0,00) is separable and complete under the
metric dg (the Skorokhod metric). The Polish topology in-
duced by dg is called the Skorokhod topology on Dx|[0, o)
and coincides on Cx [0, 00) (the space of continuous func-
tions on [0,00) with values in X) with the topology of
uniform convergence on bounded intervals.

Step Processes. For the formal definition of Markov step
processes (or pure jump process) we refer to Davis [1993].
In an equivalent manner to define a step process is to
start with a counting process (6;)¢>0 (e.g. Poisson process)
with the intensity A, and a Markov chain (X,,) with the
transition kernel u. Then, the step process is defined as
2t = Xp,. This description can be used to simulate a step
process:

1)$=X0,t=0;

2) Generate a random time interval S, exponentially
distributed with the rate A(x,t);

1 This is an acronym for the French phrase “continue & droite avec
limites & gauche” meaning “continuous on the right with left limits”.

3) Increase time t :=t + Sp;

4) Jump x — y, where the post jump location is given the
stochastic kernel p(x,t); If ¢t < tmax g0 back to step 2.

2.8 Approzximation Construction

In this section we construct an exponentially timestep-
ping approximation scheme (ETAS) for strong Markov
processes with cadlag property.

Hypotheses. Let X be a Polish space. We consider the
measurable space (X, B(X)), where B(X) or B is the Borel
o-algebra of X (i.e. the o-algebra generated by the open
sets).

More generally, we can consider that X is a Borel space,
i.e. it is homeomorphic to a Borel subset of a complete
separable space. The concept of Borel space is quite broad,
containing any “reasonable” subset of n-dimensional Eu-
clidean space. Let us consider a strong Markov process
M = (Q,F,F,x, Py). Suppose that M has the cadlag
property and the state space (X, B). Let d be a compatible
metric on X. We adjoin an extra point A (the cemetery) to
X as an isolated point, XA = X U{A} in order to capture
the situation when the transition probability p;(x, X) < 1,
i.e. the process escapes to and is trapped in a point outside
of its state space.

Let (P)i>o0 (resp. (V;)r>0) be its operator semigroup
(resp. operator resolvent (1)).

Ingredients. Fix x € X; in the following discussion, P, is
the law of M under the initial condition 2y = . In order to
construct the sequence of jump processes that approximate
M, we need the following ingredients:

1. A sequence of Markov chains (™). Each o =
(af)k=0,1,2,... is a Markov chain on X with some initial
distribution v and the (homogeneous) transition function,
K, given by

K, (x,dy) == nV,(x,dy) (2)

where V,, is the stochastic kernel computed from formula
(1), i.e. is the Laplace transform of the transition proba-
bility function of M for r = n.

2. A sequence of Poisson processes (™). Each 0™ = (6} ):>0
is a Poisson process? with the parameter n, independent
of a™.

These ingredients will help us to define, for each n > 1, a
continuous-time (reqular) Markov step process on Xa by

pt = agn, t 0. (3)

whose embedded marked point process has the intensity
equal to n and state space Xa. This means that the jump
times of the process (p}') are given by the arrival times of
the Poisson process (6}) and its values between jumps are
provided by the Markov chain (a}).

The reader might be wondering at this point why we
focus hereafter on the continuous-time process (pl'), rather
than on the apparently simpler Markov chain (a}). The
motivation is twofold: (i) We have to make transition

k
2 ie PO} =k) = cxp(—nt)%



from discrete time to continuous time at some place in
the argument, and from the probabilistic viewpoint it is
convenient to do this at the very beginning. For e.g., it
is not possible to use the Skorokhod metric between the
trajectories of the initial process and the traces of discrete
time Markov chain. (ii) There exist many models where
we want the jump rate to vary according to some process
parameters and the above construction is suitable for this.

Note that K, (z,-), given by (2), can be thought of as
the P,-distribution of zp, where T is random time inde-
pendent of M and exponentially distributed with rate n
Kallenberg [1997]. The kernel V;, can be computed using
the generator L of the process M by formula

Vii=(nl—-L)"'n>1. (4)
where I is the identity operator Ethier [1986]. Moreover,
V,, is potential kernel of the process M killed with the
exponential rate n Kallenberg [1997].

Convergence. The following theorem shows that the above
sequence of step processes converges in the Skorokhod
topology and consequently it converges weakly (in distri-
bution) to the initial Markov process.

Theorem 1. If af = x, then the sequence {p"},>1 of step
processes converges weakly to M (under P,) as n — cc.

2.4 Approximate Equivalence/Abstraction

For the purposes of this paper, we have to make clear
the concept of Markov process approximant with the
cadlag property. For a given Markov process, the transition
probabilities of an approximant do not match exactly the
transition probabilities of the initial process. Thus we need
to define an approximate equivalence for Markov processes.

Definition 1. The processes M and M’ are e—d-approximate
equivalent (1 > ¢ >0, § > 0) if and only for all x € X

Po{w € Q:djg ) (2(w), z(w)) > 6} <&, Yu>0  (5)
where d|o ) is the Skorokhod distance in the path space

The process M’ is called € — d-approzimant (1 > ¢ > 0,
d > 0) of M, or viceversa.

Then, we introduce the concept ¢ — J-approximate ab-
straction for continuous time continuous space Markov
processes with cadlag property.

Definition 2. The process M’ is called € — §-approzimate
abstraction (1 > e > 0,0 > 0) of M if M’ is a Markov
step process and is an € — §-approximant of M.

Proposition 2. For any ¢ € (0,1), 6 > 0 there exists a
countable sequence of ¢ — J-approximate abstractions of
M.

3. STOCHASTIC HYBRID SYSTEMS

General Stochastic Hybrid systems (GSHS) are a class
of non-linear stochastic continuous-time hybrid dynamical
systems. The model is rather general, since it encompasses
most of the interesting models for SHS existing in the
literature Pola and Bujorianu [2003]. The specific features
of GSHS, like its componentwise diffusion structure or

its infinitesimal generator Bujorianu and Lygeros [2006]
will not be explicitly used in this paper, but a numerical
approach based on the theory presented here will heavily
make use of these characteristics.

In the following, the syntax and the semantics of GSHS are
briefly presented and also some mathematical properties
are pointed. As usual, the GSHS hybrid state space is
X = Ujeqli} x X" and the hybrid state = := (i,2) € X
(i is the discrete state belonging to a countable set @ and
2% is the continuous state evolving in some Euclidean open
sets X%). It is known that X can be endowed with a metric
d whose restriction to any component X* is equivalent to
the usual component metric Davis [1993]. Then (X, B(X))
is a Borel space® , where B(X) is the Borel o-algebra of X.
Note that Borel space means that it is homeomorphic to
a Borel subset of a complete separable space. The concept
of Borel space is quite broad, containing any “reasonable”
subset of the n-dimensional Euclidean space.

A GSHS is defined as a stochastic hybrid automaton H =
(@, k, X),b,0,Init,\, R) Bujorianu and Lygeros [2006].
The executions of a GSHS can be described as follows:
start with an initial point o € X9 according to Init,
follow a solution of the SDE (with the parameters given by
b and o) associated to X7, jump when this trajectory hits
the boundary or according with the transition rate A (the
jump time is the minimum of the boundary hitting time
and the time, which is exponentially distributed with the
transition rate \). For each initial condition = € _gQ X,
J
the possible trajectories (executions of H) starting from
x, form a stochastic process.

Let us consider M = (Q, F, F;, z, P.), the realization or
behaviour of H (the set of all executions of H). Under
standard assumptions Bujorianu and Lygeros [2006] on
the parameters of H: (i) assumption on the diffusion co-
efficients, which ensures that for any ¢ € @, the existence
and uniqueness of the solution of the SDE corresponding
to each mode; (ii) assumption about non-Zeno executions;
(iii) assumption about the transition measure the transi-
tion rate function; M can be viewed as a family of Markov
processes.

It was proved that the realization M of a GSHS, H, is
a Borel right process Bujorianu and Lygeros [2006], i.e.
it belongs to a special class of strong Markov processes.
Moreover, it was proved that M has right-continuous
left-limited sample paths (cadlag property) Bujorianu and
Lygeros [2006]. Then the realizations of a GSHS make up
a family of Markov processes M = (Q,F, F;, x¢, P;) on
2 = Dx[0, 00) Bujorianu and Lygeros [2006] 4, which can
be thought of as a Markov process in a general setting
Davis [1993].

4. APPROXIMATIONS/ABSTRACTIONS OF SHS
In this section, we want to justify that the ETAS developed

in Section 2 could be very useful in the SHS analysis, safety
property specification and verification.

3 Note that for the majority of the stochastic hybrid system models
the state space is a Borel space Pola and Bujorianu [2003].

4 Each trajectory, which is a cadlag function, is an elementary event
of the probability space.



4.1 SHS Approximation

The main result of the Section 2, Th.1, states that for
every strong Markov process with cadlag property defined
on a Polish space can be approximated in the Skorokhod
topology by a suitable sequence of Markov step processes.

Let us briefly remind some SHS features that make ETAS
suitable for SHS: (a) The state space is a Borel space,
which can be embedded in a Polish space. (b) The re-
alizations are cadlags, then they belong to a Skorokhod
space. The ETAS convergence uses the Skorokhod metric,
which is the most suitable metric for cadlags. This metric
can ‘detect jumps’, i.e. a sequence of functions with jumps
cannot converge to a continuous function and a sequence of
continuous functions does not approximate a function with
jumps Whitt [2002]. Then, SHS will be approximated by
other much simpler SHS, whose trajectories are piecewise
constant. (c¢) In the most cases, the expression of the in-
finitesimal generator and the martingale characterization
are known Bujorianu and Lygeros [2006]. Therefore, in the
ETAS, the computation of the Markov chain transition
kernel, expressed using the resolvent operator or the gen-
erator (see (2) and (4)), is feasible and can be numerically
done.

At this point, we have to explain how the hybrid structure
of an SHS dynamics is considered in ETAS. For each
w € O, a hybrid trajectory xi(w) = (q(w),zt(w)) of
an SHS, H, can be thought of as the union ‘diffusion
components’ {z;(w)|Tx(w) < t < Typ1(w), & = 1,2,...}
where T7 < T < ... represent the jump times of H. Each
component is provided with the label g7, (. (w) since g (w)
is constant in the random time interval [T (w), Tkt1(w)).
Then, a cadlag trajectory of H is implicitly carrying
the hybrid dynamics structure. In the ETAS, we do not
interpolate the Poisson times of step processes considered
there with the jumping times of H. The reason for not
doing this is that the latter jumping times can not be
explicitly computed since a jumping time might be the
first boundary hitting time of some diffusion process or
some random time exponentially distributed with a rate
depending on the piece of diffusion trajectory covered until
that moment.

In the ETAS, proposed in this paper, the trajectories of
the system are considered ‘first class citizens’ and the
methodology is heavily based on the use of a metric
defined on the space of all possible trajectories. Due to
the complexity of the hybrid trajectories, it was proved,
even in the deterministic case, that a hybrid system H;
is an approzimate abstraction or an approzimation of the
hybrid system Hs if for every trajectory of Hs there exists
a trajectory of H; such that the distance between these
trajectories is small enough. Therefore, we considere the
ETAS to be the most suitable procedure to provide for a
given SHS, H, an approximate abstraction.

4.2 SHS Approximate Abstractions

Let H and H' be two GSHS.

Assumption 1. Suppose that the two GSHS H and H’
have the state space X.

This assumption is to ease our work. One can think at the
common state space as the direct sum of the state spaces
associated to the two SHS.

We assume that H and H’ satisfy the standard assump-
tions from the section 3. We suppose that X is a Borel
space. Let d be a compatible metric on X. Then, we con-
sider their realizations M = (Q, F, Fy,x¢, Py) and M’ =
(Y, F',F,, x;, Py). Since we have supposed that H and H'
have the same state space, then Q = Q' = Dx[0, c0).

For the realization of a GSHS, we are interested in those
€ — 0 -approximants, which corresponds to simpler GSHS
whose continuous dynamics is piecewise constant. More
precise, we are looking for € — d-approximants which are
Markov step processes.

Definition 3. The GSHS H' is called ¢ — d-approximate
abstraction (1 > >0, § > 0) of H if its realization M’ is
an e-approximate abstraction of the realization M of H.

For any ¢ € (0,1), 6 > 0, Proposition 2 states that
for any GSHS, under the standard assumptions, there
exists always an & — d-approximate abstraction H' of
H, close enough to H (closeness measured in terms of
the distance between the trajectories). Intuitively, in the
ETAS, the realization of H' is one of the step processes
whose trajectories are enough close to the trajectories of
H and the jump times are given by a Poisson process with
intensity n € N, where n is big enough. This means that
the sojourn times of M’ (the realization of H') in each
state are very small and at some level of approximation M’
can be thought of as an marked point process (17, :Eiflé), ie.

a sequence of timepoints (T}) marking the occurrence of
events (7., ) Kallenberg [1997]. Therefore, in applications,
k

one might work for simplicity with the Markov chain (z/., )
k

associated to M’ (see subsection 2.2).

In the following subsection, we will sketch how to employ
the concept of approximate abstraction in the SHS verifi-
cation. More, this concept makes available the possibility
to use probabilistic logics to specify different properties of
the initial SHS.

4.8 Applications
SHS Verification using Approximations/Abstractions

In this subsection, we conceptually define the model check-
ing problem in the context of SHS and show how the ETAS
can be fruitfully applied in order to ease the SHS verifica-
tion problem. Our proofs are based on the characterization
of the weak convergence of Markov processes in terms of
the generators/ martingales Ethier [1986].

Consider a strong Markov process M = (Q, F, Fy, x¢, Py)
with cadlag trajectories, which constitutes the evolution
of a stochastic hybrid system with the state space X
(equipped with the metric d and Borel o-algebra B(X)).
Mathematically, this might be an element of a particular
class of diffusions Prandini and Hu [2006], diffusions with
hybrid jumps Blom [2003], switching diffusions, piecewise
deterministic Markov processes (see Pola and Bujorianu
[2003] for an overview).



To address the stochastic reachability problem, assume
that we have given a set A € B(X) and a (finite or infinite)
time horizon T € [0, cc]. Let us to define:

Reachr(A) ={w e Q| e T : x¢(w) € A}. (6)
where 7 = [0, T] or [0, 00), depending on the time horizon
T. The problem consists of determining the probabilities
of such a set.

We define the probabilities of reach events as P[Reachr(A)]
where P is a probability, which can be chosen to be P, (if
we want to consider the trajectories, which start in x).

On the other hand, these probabilities can be described as
P.(Ty <T) or P,(Th < o), where

Ty = inf{t > 0|z, € A} (7)

is the first hitting time of A.

The first approach to compute the reach set probabilities
is ‘to look at the errors’. The accuracy of an approximation
(p;) (understood as a Markov process with the same state
space) for the initial model w.r.t. the model checking
problem can be expressed mathematically asking that the
following error to be ‘small enough’

Err(T, A, (z¢), (p,)) =| Exlipy<r) — Exliry < | (8)
where E, is the expectation w.r.t. P,, T is the first hitting
time of A w.r.t. (p;).

Approximate abstractions can be very useful in order to
get various upper bounds for reach set probabilities. Sup-
pose now that M’ a step process, which is an e —6 - approx-
imate abstraction of M. The reach event Reach/.(A) for
M’ is given as in (6), with x; replaced by x}. This means
that w € Reach/r(A) if and only if there exists ¢y € [0, 7]
such that z} (w) € A. Let us define the vicinity closure of
A with respect to § and d as

cs(A) ={zx e X |Fye A:d(z,y) <4}

Clearly cls(A) € B(X) since d is a continuous map in both
variables.

Proposition 3. For all A € B(X), we have:
P.[Reachr(A)] < Py[Reachlr(cls(A))] +e.

Another approach to the reachability problem is to look
at the mean of the first hitting time of the target set A
(formula (7)). When A is an unsafe set, the quantities of
interest are the lower bounds on the expected value of
this hitting time, since these bounds provide a degree of
assurance against catastrophic failure. Dually, the mean of
the first exit time from a safe domain provides a measure
of its stability. It also measures the rate of transition from
the domain it exits. The following result (see the proof in
Appendix) shows that the expectation of the hitting time
T4 of an SHS, H, can be approximated with the analogous
expectation of an approximate abstraction of H.
Proposition 4. If (p}') is a sequence of step processes given
by ETAS for M, then for each z € X and A € B(X)
E. (1) — Ez(Ta), as n — cowhere, for each n > 1, 77 is
the first hitting time of A corresponding to (p})¢>0.

)

5. FINAL REMARKS

In this paper, we focus on the issue of approximate abstrac-
tions for stochastic hybrid systems. This constitutes a fun-
damental issue in safety verification and it was approached
by many authors from different perspectives. Due to room
limitations, we hace cited only those contributions which
are strictly related to our work. The importance of this
issue comes also from the wide range of SHS applications
that span from medicine to wireless communication, com-
puter networks, air traffic control, etc.

The main contribution consists of an approximation tech-
nique using step Markov processes. These processes con-
stitute the realizations of the simplest SHS. Moreover,
Markov chains can be easily embedded in such processes.
This technique is realistic and adapted to real life phenom-
ena because of its exponentially distributed time stepping.

In a following paper, we will apply this approximation
method for formal specification of safety properties using
the continuous stochastic logic and develop a formal tech-
nique for model checking.
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